Задача 3. Решение задач аппроксимации в редакторе электронных таблиц Calc

содержание

1. Часть 1 (обязательная). Нахождение параметров нелинейной функции с помощью линейной аппроксимации

Постановка задачи аппроксимации

Предположим, что измерена экспериментально зависимость между некоторой переменной x и зависящей от нее величиной y. Всего имеется n пар значений (x_i,y_i) , i=1,2... Из теории известно, что эти две величины связаны аналитической зависимостью $F(x, a_1,...a_m)$, где $a_1,...a_m$ -параметры (числа, которые нужно подобрать). Например, если мы измеряем зависимость тока от напряжения на участке цепи, то из теории известно, что зависимость эта — прямая, а параметром является сопротивление данного участка цепи.

Необходимо найти такие значения параметров функции $F(x, a_1,...a_m)$, чтобы она наилучшим образом описывала полученную зависимость $y_i(x_i)$. Для этого требуют, чтобы сумма квадратов отклонений функции $F(x_i, a_1,...a_m)$, в точках x_i от значений y_i была минимальна, т.е.

$$R = \sum_{i=1}^{n} (y_i - F(x_i, a_1 ... a_m))^2 \to \min$$

Такой подход называется аппроксимацией, а F(x)- аппроксимирующей функцией.

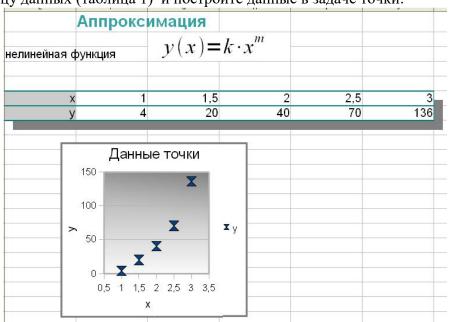
В случае линейной регрессии F(x) ищут в виде $F(x)=a_0+a_1x$, для поиска минимума функции $R(a_0,a_1)$ приравнивают ее производные к нулю и выводят уравнения для нахождения параметров.

В случае нелинейной функции F(x, a₁,...a_m), найти параметры намного сложнее. Поэтому если это возможно, нелинейную функцию сводят к линейной, находят параметры линейной функции, а затем их используют для нахождения параметров нелинейной функции.

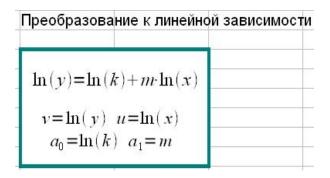
Аппроксимация нелинейных функций с помощью линейной регрессии.

В рассматриваемом примере $F(x)=y=k\cdot x^m$. Данную зависимость можно свести к линейной с помощью логарифмирования:

$$ln(y)=ln(k)+m*ln(x)$$
.


Обозначим v=ln(y), u=ln(x), a0=ln(k), a1=m. (*)

Тогда $v=a_0+a_1u$ —линейная функция и ее параметры можно найти с помощью линейной регрессии. Параметры исходной нелинейной функции можно найти с помощью обратных преобразований(из (*)):


$$m = a_1, \quad k = e^{a_0}$$

Преобразование к линейной функции и нахождение параметров

1. Откройте документ Calc, введите формулу данной в задаче нелинейной функции, таблицу данных (таблица 1) и постройте данные в задаче точки:

2. Выведите преобразования, с помощью которых данная в вашей задаче нелинейная функция, может быть сведена к линейной v=a0+a1*u (сверьтесь с таблицей на стр.43 пособия). Впишите нужные преобразования и замены переменных в документ.

3. Пересчитайте таблицу данных согласно полученной замене переменных и запишите преобразованные данные в таблицу 2

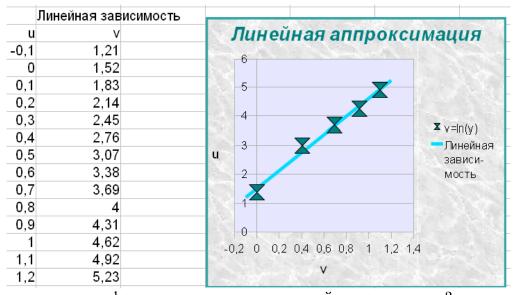
u=ln(x)	0	0,41	0,69	0,92	1,1
v=ln(y)	1,39	3	3,69	4,25	4,91

4. Организуйте расчет коэффициентов M_x , M_y , M_{xx} , M_{xy} системы линейных уравнений для нахождения параметров и, затем расчет самих параметров a_0 и a_1 (Формулы приведены ниже –их в документе набирать в редакторе формул не нужно).

Обозначим

$$M_x = \sum x_i, M_y = \sum y_i, M_{xy} = \sum x_i y_i, M_{xx} = \sum x_i^2$$

Тогда для определения ао и ат получается система уравнений:


$$a_1 M_{xx} + a_0 M_x = M_{xy}$$

$$a_1 M_x + a_0 n = M_y$$

Выражения для параметров имеют вид:

$$a_1 = \frac{M_{\mathrm{xy}} n - M_{\mathrm{x}} M_{\mathrm{y}}}{M_{\mathrm{xx}} n - M_{\mathrm{x}} M_{\mathrm{x}}}, a_0 = \frac{M_{\mathrm{xx}} M_{\mathrm{y}} - M_{\mathrm{x}} M_{\mathrm{xy}}}{M_{\mathrm{xx}} n - M_{\mathrm{x}} M_{\mathrm{x}}}$$

5. С помощью вычисленных коэффициентов рассчитайте таблицу функции v=a₀+a₁*u и постройте ее график вместе с преобразованными данными (из таблицы 2). Обратите внимание на диапазон изменения переменной u – он должен соответствовать таблице 2.

Как, используя график, оценить, правильно ли найдены параметры?

Нахождение параметров нелинейной функции

6. С помощью редактора формул запишите в документ преобразования, необходимые для расчета параметров данной нелинейной функции. Рассчитайте параметры исходной нелинейной функции, сделав такие преобразования.

Возвращаемся к нелинейн	ой зависимос	ти
$m=a_1$ $k=e^{a_0}$	m=	3,1
$m-a_1$ $\kappa-e$	k=	4,56

7. С помощью найденных параметров, рассчитайте таблицу нелинейной функции и постройте ее график вместе с исходными данными.

X F	нелинейная ф-я		
0,9	3,29		
1	4,56		
1,1	6,13	Аппроксимация	
1,2	8,02	нелинейной функцией	
1,3	10,28	160	
1,4	12,93		
1,5	16,02	140	
1,6	19,56	120 -	
1,7	23,6		
1,8	28,17	100 x _y	
1,9	33,31		
2	39,04	> 80 д — непине ф-я	
2,1	45,41	60	
2,2	52,45		
2,3	60,19	40	
2,4	68,67	20	
2,5	77,93		
2,6	87,99	0	
2,7	98,9	0,5 1 1,5 2 2,5 3 3,5	
2,8	110,7	x	

Оцените правильность решения задачи. Хорошо ли подобраны параметры? Из чего это можно понять?

Требования к защите

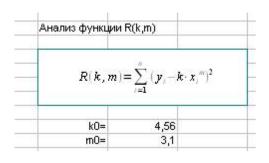
При защите задачи студент должен продемонстрировать документ – электронную таблицу Open Office.org, в котором:

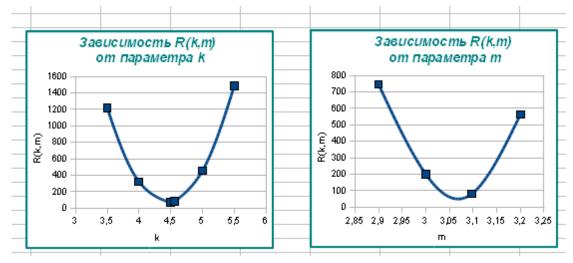
- Набрана формула данной в задаче нелинейной функции
- Приведена таблица точек и построен график, на котором представлены все данные точки;
- Указаны преобразования (набраны формулы), необходимые для приведения данной нелинейной функции к линейному виду;
- Значения точек (x_i, y_i) нелинейной функции пересчитаны в точки (u_i, v_i) линейной функции и занесены в таблицу 2
- Рассчитана таблица линейной функции и она построена на графике вместе с данными таблицы 2.
- Рассчитаны параметры и таблица нелинейной функции, данной в задаче, и она построена на графике вместе с данными таблицы 1.

Для зачета по практической части студент должен продемонстрировать:

- понимание смысла расчетов и взаимосвязи частей документа;
- умение продемонстрировать переход от нелинейной функции к линейной
- умение по полученному графику оценить, верно ли найдены параметры аппроксимирующей функции.

Для зачета по теоретической части студент должен ответить на контрольные вопросы.


Контрольные вопросы к части 1.


- 1.В чем состоит задача аппроксимации (постановка задачи аппроксимации)? Почему этот метод называют методом наименьших квадратов?
- 2. Поясните, как данную в Вашей задаче нелинейную аппроксимирующую функцию преобразовать в линейную? Как преобразуются при этом параметры? Используйте обозначения из сформированного Вами электронного документа.
- 3. Как теоретически найти параметры линейной аппроксимирующей функции? Выведите необходимые уравнения и формулы для коэффициентов аппроксимации.
- 4. Как найти параметры исходной нелинейной функции, зная параметры линейной функции?

Часть 2 (дополнительная). Изучение вида функции R(a₀,a₁).

Изучение вида функции R(a₀,a₁).

- 8. С помощью редактора формул наберите еще раз формулу нелинейной функции и формулу для расчета функции R(k,m).
- 9. Рассчитайте и постройте зависимость функции R(k,m) от параметров в окрестности найденных значений параметров): сначала зависимость R(k) при m равном значению, рассчитанному в части 1, и, аналогично, R(m). Каков смысл этих графиков? (См. рис. на следующей странице.)
- 10. Если найденные значения параметров не очень хороши, обязательно подберите расчетные значения k и m, чтобы на графиках был виден минимум функции R(k,m).

Требования к защите

При защите задачи студент должен продемонстрировать документ — электронную таблицу Open Office.org, в котором после вычисления параметров нелинейной функции (часть 1) набрана формула для расчета $R(a_0,a_1)$, рассчитана зависимость $R(a_0)$ при a_1 равном значению, рассчитанному в части 1, и, аналогично, $R(a_1)$.

Для зачета по практической части студент должен продемонстрировать:

- понимание смысла расчетов и взаимосвязи частей документа;
- умение продемонстрировать, что полученные в части 1 параметры, являются, практически, наилучшими.

Для зачета по теоретической части студент должен ответить на контрольные вопросы.

Контрольные вопросы к части 2.

1. Как по виду функции $R(a_0,a_1)$ установить, что найденные параметры аппроксимирующей функции являются наилучшими?

2. Что такое нелинейный регрессионный анализ? Из каких соображений можно найти параметры нелинейной аппроксимирующей функции? Запишите необходимые уравнения в общем виде и для функции Вашей задачи.