10. Генетическая информация

 

10.1. Молекула ДНК

 

Генетика изучает два фундаментальных свойства живых систем: наследственность и изменчивость, то есть способность живых организмов передавать свои признаки и свойства из поколения в поколение, а также приобретать новые качества. Наследственность создает непрерывную преемственность признаков, свойств и особенностей развития в рядах поколений. Изменчивость обеспечивает материал для естественного отбора, создавая как новые варианты признаков, так и бесчисленные комбинации прежде существовавших и новых признаков живых организмов.

Центральным понятием генетики является понятие «ген». Генами называют многочисленные различные единицы, из которых слагается вся совокупность генетической информации индивидуума. Каждый живой организм представляет собой неповторимую индивидуальность, потому что неповторима имеющаяся у каждого человека комбинация генов. Гены несут в себе информацию о том, какие белки и в каком соотношении должны вырабатывать наши клетки, а также о том, как будет сказываться на их образовании и взаимодействии та среда, в которой развивается и живет организм. Ген - внутриклеточная молекулярная структура, как правило, располагающаяся в ядрах клеток. Они имеются в каждой клетке, поэтому их общее количество в крупных организмах может достигать многих миллиардов.

Признаки и свойства организма, передающиеся по наследству, фиксируются в генах - участках хромосомы, определяющих возможность развития одного элементарного признака или синтез одной белковой молекулы. Хромосомы состоят из белка и дезоксирибонуклеиновой кислоты (ДНК). Совокупность всех внешних признаков организма называется фенотипом, а совокупность всех генов одного организма называется генотипом. Фенотип представляет собой результат взаимодействия генотипа и окружающей среды.

Молекула ДНК является носителем кода, который управляет химизмом всего живого, а двойная спираль молекулы ДНК стала одним из самых известных научных символов. Открытие ДНК, как и практически все великие открытия, не было результатом работы одинокого гения, а увенчало собой длинную цепь экспериментальных работ. Еще в 1920-е годы американский биохимик родом из России Фибус Левин  установил, что основные кирпичики, из которых построена ДНК, - нуклеотиды - это пятиатомный сахар дезоксирибоза, фосфатная группа и четыре азотистых основания - тимин, гуанин, цитозин и аденин (их обозначают буквами Т, Г, Ц и А). В конце 1940-х годов американский биохимик Эрвин Чаргафф выяснил, что во всех ДНК содержится равное количество оснований Т и А и аналогично равное количество оснований Г и Ц. Однако относительное содержание Т/А и Г/Ц в молекуле ДНК специфично для каждого вида.

В начале 1950-х годов стали известны два новых факта, пролившие свет на природу ДНК: американский химик Лайнус Полинг показал, что в длинных молекулах, например белках, могут образовываться связи, закручивающие молекулу в спираль, а в лондонской лаборатории М. Уилкинс и Р. Франклин получили данные рентгеноструктурного анализа, позволившие предположить, что ДНК имеет спиральную структуру.

а б
Рис. 46. Схема строения ДНК (а) и репликация (б)

Полимер ДНК обладает довольно сложной структурой. Нуклеотиды соединены между собой ковалентно в длинные полинуклеотидные цепи. Эти цепи в подавляющем большинстве случаев попарно объединяются при помощи водородных связей во вторичную структуру, получившую название двойной спирали. Остов каждой из цепей состоит из чередующихся фосфатов и сахаров. Внутри одной цепи ДНК соседние нуклеотиды соединены фосфодиэфирными связями, которые формируются в результате взаимодействия между 3'-гидроксильной (3'-ОН) группой молекулы дезоксирибозы одного нуклеотида и 5'-фосфатной группой (5'-РО3) другого. Асимметричные концы цепи ДНК называются 3' (три прим) и 5' (пять прим). Полярность цепи играет важную роль при синтезе ДНК.

У подавляющего большинства живых организмов ДНК состоит не из одной, а из двух полинуклеотидных цепей (рис. 46, а). Эти две длинные цепи закручены одна вокруг другой в виде двойной спирали, стабилизированной водородными связями, образующимися между обращёнными друг к другу азотистыми основаниями входящих в неё цепей. В природе эта спираль, чаще всего, правозакрученная. Направления от 3'-конца к 5'-концу в двух цепях, из которых состоит молекула ДНК, противоположны (цепи «антипараллельны» друг другу). Ширина двойной спирали составляет от 22 до 24 Å, длина каждого нуклеотида 3,3 Å.

Уникальным свойством ДНК является ее способность удваиваться (реплицироваться). В природе репликация ДНК происходит следующим образом: с помощью специальных ферментов (гираз), которые служат катализатором, в клетке происходит расплетение спирали в том ее участке, где должна происходить репликация. Далее водородные связи, которые связывают нити, разрываются и нити расходятся. В построении новой цепи активным «строителем» выступает специальный фермент - ДНК-полимераза. Для удвоения ДНК необходим также стартовый блок или «фундамент», в качестве которого выступает небольшой двухцепочечный фрагмент ДНК. Этот стартовый блок, а точнее - комплементарный участок цепи родительской ДНК - взаимодействует с праймером - одноцепочечным фрагментом из 20-30 нуклеотидов. Происходит репликация, или клонирование, ДНК одновременно на обеих нитях (рис. 46, б). Из одной молекулы ДНК образуются две молекулы ДНК, в которых одна нить от материнской молекулы ДНК, а вторая, дочерняя, вновь синтезированная.

Удвоение молекул ДНК происходит с удивительной точностью, чему способствует двухцепочное строение молекулы - новая молекула абсолютно идентична старой. В этом заключается глубокий смысл, потому что нарушение структуры ДНК, приводящее к искажению генетического кода, сделало бы невозможным сохранение и передачу генетической информации, обеспечивающей развитие присущих организму признаков.

Открытие способности генов к перестройке, изменению является крупнейшим открытием современной генетики. Эта способность к наследственной изменчивости получила в генетике название мутации. Она возникает вследствие изменения гена или хромосом и служит единственным источником генетического разнообразия внутри вида. Причиной мутации служат различные физические (космические лучи, радиоактивность и т. д.) и химические (разнообразные токсические соединение) причины - мутагены. Благодаря постоянному мутационному процессу возникают различные варианты генов, составляющие резерв наследственной изменчивости.

10.2. Генетический код

Генетический код это способ записи наследственной информации в молекулах нуклеиновых кислот в виде последовательности образующих эти кислоты нуклеотидов. Определённой последовательности нуклеотидов в ДНК и РНК соответствует определённая последовательность аминокислот в полипептидных цепях белков. Код принято записывать с помощью заглавных букв русского или латинского алфавита. Каждый нуклеотид обозначается буквой, с которой начинается название входящего в состав его молекулы азотистого основания: А (А) - аденин, Г (G) - гуанин, Ц (С) - цитозин, Т (Т) - тимин; в РНК вместо тимина урацил - У (U). Каждую аминокислоту кодирует комбинация из трёх нуклеотидов - триплет, или кодон.

Реализация генетической информации осуществляется в два этапа. В клеточном ядре на ДНК синтезируется информационная, или матричная, РНК (транскрипция). При этом нуклеотидная последовательность ДНК «переписывается» (перекодируется) в нуклеотидную последовательность мРНК. Затем мРНК переходит в цитоплазму, прикрепляется к рибосоме, и на ней, как на матрице, синтезируется полипептидная цепь белка (трансляция). Аминокислоты с помощью транспортной РНК присоединяются к строящейся цепи в последовательности, определяемой порядком нуклеотидов в мРНК.

Из четырёх «букв» можно составить 64 различных трёхбуквенных «слова» (кодона). Из 64 кодонов 61 кодирует определённые аминокислоты, а три отвечают за окончание синтеза полипептидной цепи. Так как на 20 аминокислот, входящих в состав белков, приходится 61 кодон, некоторые аминокислоты кодируются более чем одним кодоном (т. н. вырождённость кода). Такая избыточность повышает надёжность кода и всего механизма биосинтеза белка. Другое свойство кода - его специфичность (однозначность): один кодон кодирует только одну аминокислоту. Кроме того, код не перекрывается - информация считывается в одном направлении последовательно, триплет за триплетом.

Наиболее удивительное свойство кода - его универсальность: он одинаков у всех живых существ - от бактерий до человека (исключение составляет генетический код митохондрий). Учёные видят в этом подтверждение концепции о происхождении всех организмов от одного общего предка.

Расшифровка генетического кода, т. е. определение «смысла» каждого кодона и тех правил, по которым считывается генетическая информация, осуществлена в 1961-1965 годах и считается одним из наиболее ярких достижений молекулярной биологии.

10.3. Генная инженерия

Генная инженерия - это область биотехнологий, включающая в себя действия по перестройке генотипов. Уже сегодня генная инженерия позволяет включать и выключать отдельные гены, контролируя, таким образом, деятельность организмов, а также переносить генетические инструкции из одного организма в другой, в том числе организмы другого вида.

Если внести в организм (растение, микроорганизм, животное или даже человек) новые гены, то можно наделить его новой желательной характеристикой, которой до этого он никогда не обладал. Изменения генов, прежде всего, связано с преобразованием химической структуры ДНК: изменение последовательности нуклеотидов в хромосомной ДНК, выпадение одних и включение других нуклеотидов меняют состав образующихся на ДНК молекулы РНК, а это, в свою очередь, обусловливает новую последовательность аминокислот при синтезе. В результате в клетке начинает синтезироваться новый белок, что приводит к появлению у организма новых свойств.

Генная инженерия берет свое начало в 1973 году, когда генетики С. Кохен и Г. Бойер внедрили новый ген в бактерию кишечной палочки. К концу 1980-х удалось успешно внедрить новые гены в десятки видов растений и животных - создать растения табака со светящимися листьями, томаты, легко переносящие заморозки, кукурузу, устойчивую к воздействию пестицидов.

Одна из важных задач - получение растений, устойчивых к вирусам, так как в настоящее время не существует других способов борьбы с вирусными инфекциями сельскохозяйственных культур. Введение в растительные клетки генов белка оболочки вируса делает растения устойчивыми к данному вирусу. В настоящее время получены трансгенные растения, способные противостоять воздействию более десятка различных вирусных инфекций.

Еще одна задача связана с защитой растений от насекомых-вредителей. Применение инсектицидов не вполне эффективно, во-первых, из-за их токсичности, во-вторых, потому, что дождевой водой они смываются с растений. В генно-инженерных лабораториях Бельгии и США были успешно проведены работы по внедрению в растительную клетку генов земляной бактерии Bacillus thuringiensis, позволяющих синтезировать инсектициды бактериального происхождения. Эти гены ввели в клетки картофеля, томатов и хлопчатника. Трансгенные растения картофеля и томатов стали устойчивы к непобедимому колорадскому жуку, растения хлопчатника оказались устойчивыми к разным насекомым, в том числе к хлопковой совке. Использование генной инженерии позволило сократить применение инсектицидов на 40 - 60 %.

Рис. 47. Разноцветная кукуруза, выведенная в 2013 году в США

Генные инженеры вывели трансгенные растения с удлиненным сроком созревания плодов. Такие помидоры, например, можно снимать с куста красными, не боясь, что они перезреют при транспортировке. Список растений, к которым успешно применены методы генной инженерии, составляет около пятидесяти видов, включая яблоню, сливу, виноград, капусту, баклажаны, огурец, пшеницу, сою, рис, рожь и др.

Несмотря на то, что в США модифицированные продукты ест практически каждая семья, Европа до сих пор раздумывает - ведь вопрос о влиянии таких продуктов на здоровье человека до конца не изучен. В России массовое производство трансгенных растений пока запрещено. И все же каждый из нас почти ежедневно сталкивается с трансгенными продуктами в магазине, порой даже не подозревая об этом. Например, покупая колбасы, в состав которых часто входит генетически модифицированная соя.

Академик РАСХН, руководитель научно-исследовательского центра «Биоинженерия» К. Скрябин считает трансгенные культуры шансом человечества на спасение от голода. Он утверждает, что трансгенные растения не опаснее заменителей сахара и инсулина, которые давно уже считаются лекарствами. К тому же все изучаемые растения ученые тщательно анализируют на признаки изменения стабильности генома.

Доктор биологических наук, профессор, директор Института физиологии растений В. Кузнецов - представитель лагеря оппонентов. По его мнению, человек нарушил один из основных законов эволюции - запрет на обмен генетической информацией между далеко отстоящими видами. Вмешался в естественные природные процессы - и должен нести за это огромную ответственность. Стоит помнить, что в США и Европе трансгенные продукты продаются отдельно и тщательно маркируются. Да и стоят намного дешевле. А у нас они маркированы не всегда, продаются вместе с обычными и стоят ровно столько же. Нужно помнить и о побочных действиях употребления таких продуктов - аллергические эффекты, изменения в организме.

В РФ до сих пор не разрешено коммерчески выращивать ни одно трансгенное растение. В последние годы, согласно решению Минздрава, проводится обязательная регистрация пищевых продуктов с трансгенными компонентами (один вид американской сои, три зарегистрированных сорта кукурузы, рапс, из которого делают масло, и сахарная свекла).

В настоящий момент независимые ученые уже пришли к выводу, что активное употребление ГМ-продуктов в пищу связано с существенными рисками. Во-первых, введение в пищевую цепочку человека трансгенной еды может привести к распространению новых болезнетворных бактерий: при вставке «полезных» генов в определенную цепочку ДНК туда же может попасть и различный технологический «мусор», например ген устойчивости к антибиотикам. В результате широко распространенные лекарственные препараты просто окажутся бессильными против «мутировавших» бактерий. Трансформация живых организмов может сопровождаться непредсказуемыми изменениями и способствовать накоплению в организме человека токсичных веществ. Употребление ГМ-пищи может вызвать и сильную аллергию, так как чужеродные белки, синтезируемые трансгенными организмами, являются потенциальными аллергенами. В частности, известно, что ГМ-соя, устойчивая к гербициду раундапу, производимая американской компанией Monsanto, вызывает сильную аллергию.

Эти сообщения вызвали чуть ли не торговую войну между Европой и США - крупнейшим производителем трансгенного сельскохозяйственного сырья, немалая часть которого экспортируется. Ряд европейских компаний отказались от использования измененных компонентов. Евросоюз ввел мораторий на распространение новых видов трансгенных культур.

Начиная с 1982 года фирмы США, Японии, Великобритании и других стран производят генно-инженерный инсулин. Клонированные гены человеческого инсулина были введены в бактериальную клетку, где начался синтез гормона, который природные микробные штаммы никогда не синтезировали.

На людях технология генной инженерии была впервые применена в 1990 году для лечения Ашанти Де Сильвы, четырёхлетней девочки, страдавшей от тяжёлой формы иммунодефицита. Ген, содержащий инструкции для производства белка аденозиндезаминазы (ADA), был у неё повреждён. А без белка ADA белые клетки крови умирают, что делает организм беззащитным перед вирусами и бактериями. Работающая копия гена ADA была введена в клетки крови Ашанти с помощью модифицированного вируса. Клетки получили возможность самостоятельно производить необходимый белок. Через 6 месяцев количество белых клеток в организме девочки поднялось до нормального уровня.

После этого область генной терапии получила толчок к дальнейшему развитию. С 1990-х годов сотни лабораторий ведут исследования по использованию генной терапии для лечения заболеваний. Около 200 новых препаратов уже введены в медицинскую практику, и более 500 генно-инженерных лекарственных веществ находится на стадии клинического изучения. Среди них лекарства, излечивающие артрозы, сердечно-сосудистые заболевания, некоторые опухолевые процессы и, возможно, даже СПИД. Среди нескольких сотен генно-инженерных фирм 60 % работают над производством лекарственных и диагностических препаратов.

Неблагоприятная экологическая обстановка и целый ряд других подобных причин приводят к тому, что все больше детей рождается с серьезными наследственными дефектами. В настоящее время известно 4 тыс. наследственных заболеваний, для большинства из которых не найдено эффективных способов лечения. Сегодня существует возможность диагностировать многие генетические заболевания ещё на стадии эмбриона или зародыша. Пока можно только прекратить беременность на самой ранней стадии в случае серьёзных генетических дефектов, но скоро станет возможным корректировать генетический код, исправляя и оптимизируя генотип будущего ребёнка. Это позволит полностью избежать генетических болезней и улучшить физические, психические и умственные характеристики детей.

В 1990 году в США был начат проект «Геном человека», целью которого было определить весь генетический код человека. Проект, в котором важную роль сыграли и российские генетики, был завершён в 2003 году. В результате проекта 99 % генома было определено с точностью 99,99 % (одна ошибка на 10000 нуклеотидов). Завершение проекта уже дало практические результаты, например, простые в применении тесты, позволяющие определять генетическую предрасположенность ко многим наследственным заболеваниям.

Хотя генетика и генная инженерия уже играют огромную роль в медицине и сельском хозяйстве, основные результаты ещё впереди. Нам ещё очень многое предстоит узнать о том, как работает сложная генетическая система в нашем организме и у других видов живых существ. Необходимо определить функции и назначение каждого гена, определить, каковы условия его активации, в какие периоды жизни, в каких частях тела и при каких обстоятельствах он включается и приводит к синтезу соответствующего белка. Далее необходимо понять, какую роль играет в организме этот белок, выходит ли он за пределы клетки, какие сообщения несёт, какие реакции катализирует, как влияет на запуск биологических процессов в других частях организма, какие гены активирует. Отдельной сложной задачей является решение проблемы сворачивания белков - как, зная последовательность аминокислот, составляющих белок, определить его пространственную структуру и функции.

Но учёные не пасуют перед масштабом этой задачи. Расшифровка генома человека потребовала более десяти лет, решение проблемы сворачивания белков может занять чуть дольше, но когда она будет решена, человек сможет полностью контролировать жизненные процессы в любых организмах на всех уровнях.

Далее

Содержание