4. Электромагнитные явления

 

4.1. Электромагнитное поле и здоровье человека

 

Источники электромагнитного поля

В современных условиях научно-технического прогресса в результате развития различных видов энергетики и промышленности электромагнитные излучения занимают одно из ведущих мест по своей экологической и производственной значимости среди других факторов окружающей среды. Электромагнитное поле (ЭМП) - это особая форма материи, посредством которой осуществляется взаимодействие между заряженными частицами. ЭМП представляет собой взаимосвязанные переменные электрическое поле и магнитное поле.

Для характеристики величины электрического поля используется понятие напряженность электрического поля Е, единица измерения В/м. Величина магнитного поля характеризуется напряженностью магнитного поля H (А/м). При измерении сверхнизких и крайне низких частот часто также используется понятие «магнитная индукция» B, единица Тл (Тесла), одна миллионная часть Тл соответствует 1,25 А/м.

Физические причины существования электромагнитного поля связаны с тем, что изменяющееся во времени электрическое поле  E порождает магнитное поле  H, а изменяющееся  H - вихревое электрическое поле: обе компоненты E и  H, непрерывно изменяясь, возбуждают друг друга. ЭМП неподвижных или равномерно движущихся заряженных частиц неразрывно связано с этими частицами. При ускоренном движении заряженных частиц ЭМП «отрывается» от них и существует независимо в форме электромагнитных волн, не исчезая с устранением источника (например, радиоволны не исчезают и при отсутствии тока в излучившей их антенне).

Исследования влияния электромагнитных полей на живые организмы ведутся уже не одно десятилетие. Всемирной организацией здравоохранения (ВОЗ) учреждена даже специальная программа «Электромагнитные поля и здоровье человека». Этой проблеме уделяется самое пристальное внимание во всем мире.

Среди основных источников ЭМП можно перечислить следующие:

Электротранспорт. Транспорт на электрической тяге - электропоезда (в том числе поезда метрополитена), троллейбусы, трамваи и т. п. - является относительно мощным источником магнитного поля в диапазоне частот от 0 до 1000 Гц.

Линии электропередачи. Провода работающей линии электропередачи создают в прилегающем пространстве электрическое и магнитное поля промышленной частоты. Расстояние, на которое распространяются эти поля от проводов линии достигает десятков метров. Дальность распространения магнитного поля зависит от величины протекающего тока или от нагрузки линии. Поскольку нагрузка ЛЭП может неоднократно изменяться как в течение суток, так и с изменением сезонов года, размеры зоны повышенного уровня магнитного поля также меняются.

Электропроводка. Наибольший вклад в электромагнитную обстановку жилых помещений в диапазоне частоты 50 Гц вносит электротехническое оборудование здания, а именно кабельные линии, подводящие электричество ко всем квартирам и другим потребителям системы жизнеобеспечения здания, а также распределительные щиты и трансформаторы. В помещениях, смежных с этими источниками, обычно повышен уровень магнитного поля промышленной частоты, вызываемый протекающим электротоком.

Бытовая электротехника. В наше время считается модным, удобным и престижным, если сумеешь упаковать своё жилище бытовой техникой под завязку. Чем больше в квартире электрических приборов, помогающих в быту, тем комфортнее. А между тем учёные и врачи мира все жарче спорят о таком факте, как загрязнение жилого пространства электромагнитными излучениями. Все бытовые приборы, работающие с использованием электрического тока, являются источниками электромагнитных полей. Наиболее мощными следует признать СВЧ-печи, аэрогрили, холодильники с системой «без инея», кухонные вытяжки, электроплиты, телевизоры. Значения магнитного поля тесно связаны с мощностью прибора - чем она выше, тем выше магнитное поле при его работе.

Микроволновая печь (или СВЧ-печь) в своей работе использует для разогрева пищи электромагнитное поле, называемое также микроволновым излучением или СВЧ-излучением. Кроме СВЧ-излучения работу микроволновой печи сопровождает интенсивное магнитное поле, создаваемое током промышленной частоты 50 Гц, протекающим в системе электропитания печи. При этом микроволновая печь является одним из наиболее мощных источников магнитного поля в квартире.

Теле- и радиостанции. На территории России в настоящее время размещается значительное количество передающих радиоцентров различной принадлежности. Передающие радиоцентры размещаются в специально отведенных для них зонах и могут занимать довольно большие территории (до 1000 га). По своей структуре они включают в себя одно или несколько технических зданий, где находятся радиопередатчики, и антенные поля, на которых располагаются до нескольких десятков антенно-фидерных систем (АФС). АФС включает в себя антенну, служащую для измерения радиоволн, и фидерную линию, подводящую к ней высокочастотную энергию, генерируемую передатчиком.

Спутниковая связь. Системы спутниковой связи состоят из приемопередающей станции на Земле и спутника, находящегося на орбите. Диаграмма направленности антенны станций спутниковой связи имеет ярко выраженной узконаправленный основной луч - главный лепесток. Плотность потока энергии в главном лепестке диаграммы направленности может достигать нескольких сотен Вт/м2 вблизи антенны, создавая также значительные уровни поля на большом удалении. Однако рассеяние энергии от основного луча очень небольшое и происходит больше всего в районе размещения антенны.

Сотовая связь. Сотовая радиотелефония является сегодня одной из наиболее интенсивно развивающихся телекоммуникационных систем. Основными элементами системы сотовой связи являются базовые станции (БС) и мобильные радиотелефоны (МРТ). Базовые станции поддерживают радиосвязь с мобильными радиотелефонами, вследствие чего БС и МРТ являются источниками электромагнитного излучения в УВЧ - диапазоне. Важной особенностью системы сотовой радиосвязи является весьма эффективное использование выделяемого для работы системы радиочастотного спектра (многократное использование одних и тех же частот, применение различных методов доступа), что делает возможным обеспечение телефонной связью значительного числа абонентов. В работе системы применяется принцип деления некоторой территории на зоны, или «соты», радиусом обычно 0,5-10 км.

Базовые станции поддерживают связь с находящимися в их зоне действия мобильными радиотелефонами и работают в режиме приема и передачи сигнала. В зависимости от стандарта БС излучают электромагнитную энергию в диапазоне частот от 463 до 1880 МГц. Антенны БС устанавливаются на высоте 15-100 м от поверхности земли на уже существующих постройках (общественных, служебных, производственных и жилых зданиях, дымовых трубах промышленных предприятий и т. д.) или на специально сооруженных мачтах. Среди установленных в одном месте антенн БС имеются как передающие (или приемопередающие), так и приемные антенны, которые не являются источниками ЭМП.

Мобильный радиотелефон представляет собой малогабаритный приемопередатчик. Совсем недавно мобильный телефон был модным, но редким явлением, сейчас же он есть почти у каждого. Новые тарифные планы провоцируют людей разговаривать по телефону все больше и больше. Следовательно, доза электромагнитного излучения, которую получает человек за сутки, возрастает. С момента появления мобильных телефонов не утихают споры: вредно или нет постоянное их использование для здоровья человека. Мнения на этот счет расходятся.

В зависимости от стандарта телефона передача ведется в диапазоне частот 453-1785 МГц. Мощность излучения МРТ является величиной переменной, в значительной степени зависящей от состояния канала связи «мобильный радиотелефон - базовая станция», т. е. чем выше уровень сигнала БС в месте приема, тем меньше мощность излучения МРТ. Максимальная мощность находится в границах 0,125-1 Вт, однако в реальной обстановке она обычно не превышает 0,05-0,2 Вт. Вопрос о воздействии излучения МРТ на организм пользователя до сих пор остается открытым. Многочисленные исследования, проведенные учеными разных стран, включая Россию, на биологических объектах (в том числе на добровольцах), привели к неоднозначным, иногда противоречащим друг другу, результатам. Неоспоримым остается лишь тот факт, что организм человека «откликается» на наличие излучения сотового телефона. Исследования возможного влияния биологического действия электромагнитного поля элементов систем сотовой связи вызывают большой интерес у общественности.

При работе мобильного телефона электромагнитное излучение воспринимается не только приемником базовой станции, но и телом пользователя, и в первую очередь его головой. Что при этом происходит в организме человека, насколько это воздействие опасно для здоровья? Однозначного ответа на этот вопрос до сих пор не существует.

Радары. Радиолокационные станции оснащены, как правило, антеннами зеркального типа и имеют узконаправленную диаграмму излучения в виде луча, направленного вдоль оптической оси.

Радиолокационные системы работают на частотах от 500 МГц до 15 ГГц, однако отдельные системы могут работать на частотах до 100 ГГц. Создаваемый ими ЭМ-сигнал принципиально отличается от излучения иных источников. Связано это с тем, что периодическое перемещение антенны в пространстве приводит к пространственной прерывистости облучения. Временная прерывистость облучения обусловлена цикличностью работы радиолокатора на излучение. Время наработки в различных режимах работы радиотехнических средств может исчисляться от нескольких часов до суток.

Биологическое действие ЭМП

Электрические и магнитные поля являются очень сильными факторами влияния на состояние всех биологических объектов, попадающих в зону их воздействия. Например, в районе действия электрического поля ЛЭП у насекомых проявляются изменения в поведении: так, у пчел фиксируется повышенная агрессивность, беспокойство, снижение работоспособности и продуктивности, склонность к потере маток; у жуков, комаров, бабочек и других летающих насекомых наблюдается изменение поведенческих реакций, в том числе изменение направления движения в сторону с меньшим уровнем поля.

У растений распространены аномалии развития - часто меняются формы и размеры цветков, листьев, стеблей, появляются лишние лепестки.

Человеческий организм всегда реагирует на электромагнитное поле. Однако, для того чтобы эта реакция переросла в паталогию и привела к заболеванию, необходимо совпадение ряда условий - в том числе достаточно высокий уровень поля и продолжительность облучения. Поэтому при использовании бытовой техники с малыми уровнями поля и/или кратковременно ЭМП бытовой техники не оказывает влияния на здоровье основной части населения. Согласно современным представлениям, магнитное поле промышленной частоты может быть опасным для здоровья человека, если происходит продолжительное облучение (регулярно, не менее 8 часов в сутки, в течение нескольких лет) с уровнем выше 0,2 мкТл.

Наиболее чувствительные системы организма человека к ЭМП: нервная, иммунная, эндокринная и половая, хотя от ЭМП сотового телефона страдает весь организм. Биологический эффект ЭМП в условиях длительного многолетнего воздействия накапливается, в результате возможно развитие отдаленных последствий, включая дегенеративные процессы центральной нервной системы, рак крови (лейкозы), опухоли мозга, гормональные заболевания. Электромагнитные поля могут быть особенно опасны для детей, беременных (эмбрион), людей с заболеваниями центральной нервной, гормональной, сердечно-сосудистой системы, аллергиков и людей с ослабленным иммунитетом.

Большое число исследований, выполненных в России, дают основание отнести нервную систему к одной из наиболее чувствительных систем в организме человека к воздействию ЭМП. На уровне нервной клетки, структурных образований по передачи нервных импульсов, на уровне изолированных нервных структур возникают существенные отклонения при воздействии ЭМП малой интенсивности. Изменяется высшая нервная деятельность, память у людей, имеющих контакт с ЭМП. Эти лица могут иметь склонность к развитию стрессорных реакций. Определенные структуры головного мозга имеют повышенную чувствительность к ЭМП. Особую высокую чувствительность к ЭМП проявляет нервная система эмбриона.

Различные организации, как государственные, так и международные, разработали множество стандартов и требований для предотвращения какого бы то ни было влияния электромагнитного поля на человека, и почти вся продаваемая техника соответствует этим требованиям. Таким образом, можно заключить, что соблюдение санитарных и гигиенических норм при градостроительстве и следование необременительным рекомендациям по использованию бытовых приборов практически нивелирует влияние электромагнитных полей на человека.

4.2. Молния

Рис.  18. Бог-громовержец Перун

Наша природа богата не только разнообразием жизней, но и явлений, которые человечеству понять сложно. Когда-то наводнения, затмения и грозы списывали на гнев богов. Приносились жертвы, читались молитвы, но ужасные явления продолжались. С неба лился огонь, под ногами разверзалась земля. Гроза, молния и дождь ассоциировались у древних славян с жизненной силой природы. В славянской мифологии бог Перун считался родоначальником небесного огня, который дает жизнь всему живому на Земле. Оружием бога-громовержца были палица, топор и лук, с помощью которых он пускал молниеносные стрелы (рис. 18). Во времена князя Владимира Перуна сделали главным славянским богом, символизирующим воинскую силу дружины.

Сегодня благодаря долгим исследованиям, новейшей технике и учёным умам мы понимаем, что гнев богов здесь ни при чём. Люди научились понимать природу самой природы. Одним из удивительных и красивых явлений природы является молния.

Молния - гигантский электрический искровой разряд в атмосфере, обычно происходит во время грозы, проявляющийся яркой вспышкой света и сопровождающим её громом. Молнии также были зафиксированы на Венере, Юпитере, Сатурне и Уране. Ток в разряде молнии достигает 10-100 тыс. А, напряжение - 1 млн В (иногда достигает 50 млн В). На рис. 19, а представлена фотография оптических вспышек на Юпитере, сделанная кораблем Галилео . Светлые пятнышки, обведенные кружками, и есть молнии. Размер самого большого пятна составляет 500 км.

Наиболее часто молния возникает в кучево-дождевых облаках, тогда они называются грозовыми; иногда молния образуется в слоисто-дождевых облаках, а также при вулканических извержениях (рис. 19, б), торнадо и пылевых бурях.

Обычно наблюдаются линейные молнии, которые относятся к так называемым безэлектродным разрядам, так как они начинаются (и заканчиваются) в скоплениях заряженных частиц. Это определяет их некоторые до сих пор не объяснённые свойства, отличающие молнии от разрядов между электродами. Так, молнии не бывают короче нескольких сотен метров; они возникают в электрических полях значительно более слабых, чем поля при межэлектродных разрядах; сбор зарядов, переносимых молнией, происходит за тысячные доли секунды с миллиардов мелких, хорошо изолированных друг от друга частиц, расположенных в объёме нескольких кубических километрах. Наиболее изучен процесс развития молнии в грозовых облаках, при этом молнии могут проходить в самих облаках - внутриоблачные молнии (рис. 19 в), а могут ударять в землю - наземные молнии (рис. 19, г). Для возникновения молнии необходимо, чтобы в относительно малом (но не меньше некоторого критического) объёме облака образовалось электрическое поле с напряжённостью, достаточной для начала электрического разряда (~1 МВ/м), а в значительной части облака существовало бы поле со средней напряжённостью, достаточной для поддержания начавшегося разряда (~ 0,1 - 0,2 МВ/м).

а б в г

Рис. 19. Молнии

Процесс развития наземной молнии состоит из нескольких стадий (рис. 20). На первой стадии, в зоне, где электрическое поле достигает критического значения, начинается ударная ионизация, создаваемая вначале свободными зарядами, всегда имеющимися в небольшом количестве в воздухе, которые под действием электрического поля приобретают значительные скорости по направлению к Земле и, сталкиваясь с молекулами, составляющими воздух, ионизуют их. По более современным представлениям, разряд инициируют высокоэнергетические космические лучи, которые запускают процесс, получивший название пробоя на убегающих электронах. Таким образом, возникают электронные лавины, переходящие в нити электрических разрядов - стримеры, представляющие собой хорошо проводящие каналы, которые, сливаясь, дают начало яркому термоионизованному каналу с высокой проводимостью - ступенчатому лидеру молнии.

Рис. 20. Формирование молнии

Движение лидера к земной поверхности происходит ступенями в несколько десятков метров со скоростью ~ 50 тыс. километров в секунду, после чего его движение приостанавливается на несколько десятков микросекунд, а свечение сильно ослабевает; затем в последующей стадии лидер снова продвигается на несколько десятков метров. Яркое свечение охватывает при этом все пройденные ступени; затем следуют снова остановка и ослабление свечения. Эти процессы повторяются при движении лидера до поверхности Земли со средней скоростью 200 тыс. метров в секунду.

По мере продвижения лидера к Земле напряжённость поля на его конце усиливается и под его действием из выступающих на поверхности Земли предметов выбрасывается ответный стример, соединяющийся с лидером. Эта особенность молнии используется для создания молниеотвода.

В заключительной стадии по ионизованному лидером каналу следует обратный (снизу вверх), или главный, разряд молнии, характеризующийся токами от десятков до сотен тысяч ампер, яркостью, заметно превышающей яркость лидера, и большой скоростью продвижения, вначале доходящей до ~100 тыс. километров в секунду, а в конце уменьшающейся до ~ 10 000 километров в секунду. Температура канала при главном разряде может превышать 25 000 °C. Длина канала молнии может быть от 1 до 10 км, диаметр - несколько сантиметров. После прохождения импульса тока ионизация канала и его свечение ослабевают. В финальной стадии ток молнии может длиться сотые и даже десятые доли секунды, достигая сотен и тысяч ампер. Такие молнии называют затяжными, они наиболее часто вызывают пожары. Но Земля не является заряженной, поэтому принято считать, что разряд молнии происходит от облака по направлению к Земле (сверху вниз).

Главный разряд разряжает нередко только часть облака. Заряды, расположенные на больших высотах, могут дать начало новому (стреловидному) лидеру, движущемуся непрерывно со скоростью в тысячи километров в секунду. Яркость его свечения близка к яркости ступенчатого лидера. Когда стреловидный лидер доходит до поверхности Земли, следует второй главный удар, подобный первому. Обычно молния включает несколько повторных разрядов, но их число может доходить и до нескольких десятков. Длительность многократной молнии может превышать 1 с. Смещение канала многократной молнии ветром создаёт так называемую ленточную молнию - светящуюся полосу.

Рис. 21. Фигуры Лихтенберга

Молнии - серьёзная угроза для жизни людей. Поражение человека или животного молнией часто происходит на открытых пространствах, так как электрический ток идёт по кратчайшему пути «грозовое облако - Земля». Часто молния попадает в деревья и трансформаторные установки на железной дороге, вызывая их возгорание. Поражение обычной линейной молнией внутри здания невозможно, однако бытует мнение, что так называемая шаровая молния может проникать через щели и открытые окна.

В организме пострадавших отмечаются такие же патологические изменения, как при поражении электротоком. Жертва теряет сознание, падает, могут отмечаться судороги, часто останавливается дыхание и сердцебиение. На теле обычно можно обнаружить «метки тока», места входа и выхода электричества. В случае смертельного исхода причиной прекращения основных жизненных функций является внезапная остановка дыхания и сердцебиения, от прямого действия молнии на дыхательный и сосудодвигательный центры продолговатого мозга. На коже часто остаются так называемые знаки молнии, древовидные светло-розовые или красные полосы (фигуры Лихтенберга) - результат расширения капилляров в зоне контакта молнии с телом.

Разряды молний представляют большую опасность для электрического и электронного оборудования. При прямом попадании молнии в провода в линии возникает перенапряжение, вызывающее разрушение изоляции электрооборудования, а большие токи обусловливают термические повреждения проводников. Для защиты от грозовых перенапряжений электрические подстанции и распределительные сети оборудуются различными видами защитного оборудования, таким как разрядниками, нелинейными ограничителями перенапряжения, длинноискровыми разрядниками. Для защиты от прямого попадания молнии используются молниеотводы и грозозащитные тросы. Для электронных устройств представляет опасность также и электромагнитный импульс, создаваемый молнией.

4.3. Производство электроэнергии. Энергетика

В наши дни электроэнергия многими воспринимается как нечто само собой разумеющееся. Развитие современного общества, построение материально-технической базы немыслимо без увеличения выработки энергии. В энергетическом балансе современного высокоразвитого общества электрическая энергия играет все большую роль. В действительности нам, разумеется, не нужна электроэнергия как таковая, поскольку мы не можем ее ни воспринимать, ни непосредственно употреблять. Электрическую энергию можно, однако, относительно простыми средствами превращать в тепло, механическую работу или другие формы энергии.

Для преобразования различных видов энергии в электрическую предназначены электрические станции. Электрическая станция это совокупность установок, оборудования и аппаратуры, используемых непосредственно для производства электрической энергии, а также необходимые для этого сооружения и здания, расположенные на определённой территории.

Первая российская электростанция появилась в Петербурге в 1879 году и предназначалась для освещения Литейного моста. Следующую электростанцию построили через пару лет в Москве для освещения Лубянского пассажа. Уже в 1886 году в России работало несколько электростанций - под Санкт-Петербургом и Москвой, Киевом и Нижним Новгородом, Баку и Харьковом. Работали они на привозном топливе и вырабатывали постоянный ток для уличного освещения. Тогда же на реке Охте в Петербурге построили первую и очень небольшую по мощности (всего 350 лошадиных сил) гидроэлектростанцию. Следующая - в 3 раза мощнее - была сооружена в 1903 году на горной речке Подкумке вблизи Ессентуков. Полученная от нее электроэнергия позволила осветить улицы Кисловодска, Железноводска и Пятигорска.

В зависимости от источника энергии различают:

  • тепловые электростанции (ТЭС), использующие природное топливо;

  •  гидроэлектростанции (ГЭС), использующие энергию падающей воды запруженных рек;

  • атомные электростанции (АЭС), использующие ядерную энергию;

  • электростанции, использующие ветровую, солнечную, геотермальную и другие виды энергий.

В России около 75 % энергии производится на тепловых электростанциях. ТЭС строят в районах добычи топлива или в районах потребления энергии. На тепловых электрических станциях энергия сжигаемого топлива преобразуется в паровом котле в энергию водяного пара, приводящего в движение паровую турбину, соединенную с генератором. Механическая энергия вращения турбины преобразуется генератором в электрическую. Отработанный пар поступает в конденсатор и превращается в воду. Далее с помощью насоса вода подается в паровой котел, и цикл повторяется.

Рис.  22. Схема устройства ядерного реактора

К тепловым электрическим станциям относятся также атомные электростанции. На них используется тепловая энергия распада атомного ядра изотопа урана или тория. Устройство, в котором поддерживается управляемая реакция деления ядер, называется ядерным (или атомным) реактором. Схема ядерного реактора на медленных нейтронах приведена на рис. 22.

Ядерная реакция протекает в активной зоне реактора, которая заполнена замедлителем и пронизана стержнями, содержащими обогащенную смесь изотопов урана с повышенным содержанием урана-235 (до 3 %). В активную зону вводятся регулирующие стержни, содержащие кадмий или бор, которые интенсивно поглощают нейтроны. Введение стержней в активную зону позволяет управлять скоростью цепной реакции.

Активная зона охлаждается с помощью прокачиваемого теплоносителя, в качестве которого может применяться вода или металл с низкой температурой плавления (например, натрий, имеющий температуру плавления 98 °C). В парогенераторе теплоноситель передает тепловую энергию воде, превращая ее в пар высокого давления, который направляется в турбину, соединенную с электрогенератором, а из турбины поступает в конденсатор. Во избежание утечки радиации контуры теплоносителя I и парогенератора II работают по замкнутым циклам.

Турбина атомной электростанции является тепловой машиной, определяющей в соответствии со вторым законом термодинамики общую эффективность станции. У современных атомных электростанций коэффициент полезного действия приблизительно равен ⅓.

Преимущества АЭС перед тепловыми и гидроэлектростанциями очевидны: нет газовых выбросов, нет необходимости вести огромные объемы строительства, возводить плотины и хоронить плодородные земли на дне водохранилищ. И все же целесообразность строительства и эксплуатации АЭС часто ставят под сомнение из-за вредного воздействия радиоактивных веществ на окружающую среду и человека.

Основная опасность АЭС - возможность аварий с тяжелыми последствиями. Авария на Чернобыльской АЭС в 1986 году - самая крупная из аварий такого рода. Масштабы этой аварии носят поистине глобальный характер. Ее последствия ощутило население многих стран. Экономический ущерб от Чернобыльской катастрофы в три раза превышает экономический эффект от использования атомной энергии за весь срок ее существования до катастрофы. Однако, несмотря на их тяжесть, в целом вероятность таких аварий невелика. С момента появления атомной энергетики произошло не более трех десятков аварий, и лишь в четырех случаях имел место выброс радиоактивных веществ в окружающую среду. Однако масштабы загрязнений, сопутствующих таким авариям, часто приобретают глобальный характер.

Даже если атомная электростанция работает идеально и без малейших сбоев, ее эксплуатация неизбежно ведет к накоплению радиоактивных веществ. Поэтому людям приходится решать очень серьезную проблему - безопасное хранение отходов. Радиоактивные отходы образуются почти на всех стадиях ядерного цикла. Они накапливаются в виде жидких, твердых и газообразных веществ с разным уровнем активности и концентрации. Большинство отходов являются низкоактивными: это вода, используемая для очистки газов и поверхностей реактора, перчатки и обувь, загрязненные инструменты, отработавшее оборудование, пыль, газовые фильтры и многое другое.

Газы и загрязненную воду пропускают через специальные фильтры, пока они не достигнут чистоты атмосферного воздуха и питьевой воды. Ставшие радиоактивными фильтры перерабатывают вместе с твердыми отходами. Их смешивают с цементом и превращают в блоки или вместе с горячим битумом заливают в стальные емкости. Труднее всего подготовить к долговременному хранению высокоактивные отходы. Лучше всего такой «мусор» превращать в стекло и керамику. Для этого отходы прокаливают и сплавляют с веществами, образующими стеклокерамическую массу. В отличие от многих химических отходов, опасность радиоактивных отходов со временем снижается. Большая часть радиоактивных изотопов имеет период полураспада около 30 лет, поэтому уже через 300 лет они почти полностью исчезнут. Так что для окончательного удаления радиоактивных отходов необходимо строить такие долговременные хранилища, которые позволили бы надежно изолировать отходы от их проникновения в окружающую среду до полного распада радионуклидов. Такие хранилища называют могильниками. Вокруг хранилища устанавливают контролируемую зону, в которой вводят ограничения на деятельность человека, в том числе бурение и добычу полезных ископаемых.

Предлагался еще один способ решения проблемы радиоактивных отходов - отправлять их в космос. Действительно, объем отходов невелик, поэтому их можно удалить на такие космические орбиты, которые не пересекаются с орбитой Земли, и навсегда избавиться от радиоактивного загрязнения. Однако этот путь был отвергнут из-за опасности непредвиденного возвращения на Землю ракеты-носителя в случае возникновения каких-либо неполадок. В некоторых странах рассматривается метод захоронения твердых радиоактивных отходов в глубинные воды океанов. Этот метод подкупает своей простотой и экономичностью. Однако такой способ вызывает серьезные возражения, основанные на коррозионных свойствах морской воды. Высказываются опасения, что коррозия достаточно быстро нарушит целостность контейнеров и радиоактивные вещества попадут в воду, а морские течения разнесут активность по морским просторам.

Эксплуатация АЭС сопровождается не только опасностью радиационного загрязнения, но и другими видами воздействия на окружающую среду. Основным является тепловое воздействие. Оно в полтора-два раза выше, чем от тепловых электростанций. При работе АЭС возникает необходимость охлаждения отработанного водяного пара. Самым простым способом является охлаждение водой из реки, озера, моря или специально сооруженных бассейнов. Вода, нагретая на 5-15 °С, вновь возвращается в тот же источник. Но этот способ несет с собой опасность ухудшения экологической обстановки в водной среде в местах расположения АЭС. Большее применение находит система водоснабжения с использованием градирен, в которых охлаждение воды происходит за счет ее частичного испарения и охлаждения. Небольшие потери пополняются постоянной подпиткой свежей водой. При такой системе охлаждения в атмосферу выбрасывается огромное количество водяного пара и капельной влаги. Это может привести к увеличению количества выпадающих осадков, частоты образования туманов, облачности. В последние годы стали применять систему воздушного охлаждения водяного пара. В этом случае нет потерь воды, и она наиболее безвредна для окружающей среды. Однако такая система не работает при высокой средней температуре окружающего воздуха. Кроме того, себестоимость электроэнергии существенно возрастает.

В разных странах по-разному относятся к АЭС. Лидером в использовании энергии «мирного атома» является Франция. Около 80 % электроэнергии здесь вырабатывается на АЭС. В Германии, наоборот, принято решение к 2020 году закрыть все АЭС на территории страны. В США после нескольких лет спада в ядерной энергетике она вновь объявлена одним из главных направлений энергетической стратегии. В Австрии по результатам общенационального референдума было принято решения не вводить в эксплуатацию единственную построенную там атомную станцию. Дания полностью отказалась от применения атомной энергии.

Специалисты, которые могут наиболее квалифицированно оценить достоинства и возможности использования ядерной энергетики, считают, что человечеству уже не обойтись без энергии атома. Ядерная энергетика - один из наиболее перспективных путей утоления энергетического голода человечества.

Рис. 23. Саяно-Шушенская ГЭС

Многие страны в мире располагают значительными водными богатствами, что позволяет успешно использовать энергию водного потока рек для производства электрической энергии. Наиболее эффективными являются сооружения крупных гидроэлектростанций мощностью в сотни тысяч киловатт.

Гидроэлектростанции имеют ряд преимуществ: легко поддаются автоматизации, обладают быстрым запуском, малыми эксплуатационными расходами, а значит, и низкой себестоимостью производимой электроэнергии. Недостатками ГЭС являются значительные капитальные вложения, вызванные большими объемами земляных и строительных работ, устройством водохранилищ, плотин, отводных каналов и др.

Производство электроэнергии осуществляется за счет использования энергии падающей воды. Высота падения воды называется напором. Он создается установкой плотины, размещенной поперек реки (рис. 23). Величина напора определяется разницей верхнего уровня водного пространства до плотины и нижнего после ее. Используя полученный перепад уровней воды, можно привести в действие рабочее колесо гидротурбины и закрепленный на одном валу с ней генератор, вырабатывающий электрический ток.

На гидростанциях не вся энергия водного потока превращается в полезную работу. Часть энергии (до 30 %) расходуется на механические сопротивления, потери в гидросооружениях и генераторах. КПД гидроэлектростанций значительно выше, чем тепловых или ядерных электростанций, и составляет 80-90%.

Электрическая энергия является наиболее удобным видом энергии и по праву может считаться основой современной цивилизации. Подавляющее большинство технических средств механизации и автоматизации производственных процессов, замена человеческого труда машинным в быту имеют электрическую основу.

Отрасль промышленности, совокупность больших естественных и искусственных подсистем, служащих для преобразования, распределения и использования энергетических ресурсов всех видов называется энергетикой. Уровень ее развития отражает уровень развития производительных сил общества, возможности научно-технического прогресса и уровень жизни населения. В современном мире энергетика является основой развития базовых отраслей промышленности, определяющих прогресс общественного производства. Во всех промышленно развитых странах темпы развития энергетики опережали темпы развития других отраслей.

Чаще всего энергетика подразделяется на типы по используемому топливу или источнику энергии: традиционные и нетрадиционные:

Все энергетические структуры, в т. ч. электростанции, нуждаются в источнике энергии, чаще всего это специальное сырье. Энергию, которую мы используем сегодня, получают в основном из ископаемых видов топлива. Уголь, нефть и природный газ - ископаемые виды топлива, созданные в течение миллионов лет в процессе распада растений и животных. Месторасположение этих ресурсов - недра Земли. Под воздействием высокой температуры и давления процесс образования ископаемых видов топлива продолжается и сегодня, однако их использование происходит намного быстрее, чем образование. По этой причине ископаемые виды топлива считаются невозобновляемыми, поскольку их ресурсы могут исчерпаться в недалеком будущем. Кроме того, сжигание ископаемых видов топлива ведет к загрязнению и другим негативным воздействиям на природную среду. Поскольку наше существование зависит от энергии, мы должны использовать такие ее источники, ресурсы которых были бы неограниченными. Такие источники энергии называются возобновляемыми. Кроме того, производство энергии из возобновляемых источников не наносит вред окружающей среде в отличие от сжигания ископаемых видов топлива.

Рис. 24. Ветряная и солнечная электростанции

В понятие «возобновляемые источники энергии» (ВИЭ) включаются следующие формы энергии: солнечная, геотермальная, ветровая, энергия морских волн, течений, приливов и океана, энергия биомассы, гидроэнергия и другие «новые» виды возобновляемой энергии (рис. 24).

До последнего времени в развитии энергетики прослеживалась четкая закономерность: развитие получали те направления энергетики, которые обеспечивали достаточно быстрый прямой экономический эффект. Связанные с этими направлениями социальные и экологические последствия рассматривались лишь как сопутствующие, и их роль в принятии решений была незначительной.

При таком подходе ВИЭ рассматривались лишь как энергоресурсы будущего, когда будут исчерпаны традиционные источники энергии или когда их добыча станет чрезвычайно дорогой и трудоемкой. Так как это будущее представлялось достаточно отдаленным (да и сейчас говорить серьезно об истощении потенциала традиционных энергоресурсов можно лишь с большой натяжкой), то использование ВИЭ представлялось достаточно интересной, но в современных условиях скорее экзотической, чем практической, задачей.

Ситуацию резко изменило осознание человечеством экологических пределов роста. Быстрый экспоненциальный рост негативных антропогенных воздействий на окружающую среду ведет к существенному ухудшению среды обитания человека. Поддержание этой среды в нормальном состоянии становится одной из приоритетных целей жизнедеятельности общества. В этих условиях прежние, только узко экономические оценки различных направлений техники, технологии, хозяйствования становятся явно недостаточными, ибо они не учитывают социальные и экологические аспекты.

Основное преимущество возобновляемых источников энергии - неисчерпаемость и экологическая чистота. Их использование не изменяет энергетический баланс планеты. Эти качества и послужили причиной бурного развития возобновляемой энергетики за рубежом и весьма оптимистических прогнозов их развития в ближайшем десятилетии.

Далее

Содержание