Тема 1. Основания математики


1. История развития математики.
2. Обозначения чисел и история систем счисления.
3. Понятие системы счисления.
   Лабораторная работа № 1.   Системы счисления.

3. Понятие системы счисления

Система счисления – это способ представления чисел и соответствующие ему правила действий над числами. Система счисления – это знаковая система, в которой числа записываются по определенным правилам с помощью символов некоторого алфавита, называемых цифрами.

Алфавит Х из р символов и правила записи (изображения) и обработки чисел с помощью символов этого алфавита называются системой счисления (нумерацией) с основанием р. Число X в системе с основанием р обозначается как Xp. Основание системы записывается справа от числа в нижнем индексе: 510, 11101102, AF17816 и т.д.

Основанием системы счисления называется количество цифр и символов, применяющихся для изображения числа. Определить основание очень легко, нужно только пересчитать количество значащих цифр в системе. Мы, например, используем цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Их ровно 10, поэтому основание нашей системы счисления тоже 10, и система счисления называется “десятичная”.

База системы — это последовательность цифр, используемых для записи числа. Ни в одной системе нет цифры, равной основанию системы.

Любая система счисления – это система кодирования числовых величин (количеств), позволяющая выполнять операции кодирования и декодирования, то есть по любой количественной величине однозначно находить его кодовое представление и по любой кодовой записи – восстанавливать соответствующую ей числовую величину.

Наиболее используемые в информатике системы счисления:

  • двоичная, над алфавитом Х = {0, 1};
  • восьмеричная, над алфавитом Х = {0, 1, 2, 3, 4, 5, 6, 7};
  • шестнадцатеричная, над алфавитом Х = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, А, В, С, D, Е, F}, где символы А, В, С, D, Е, F имеют десятичные веса 10, 11, 12, 13, 14, 15.
  • Все системы счисления строятся по общему принципу: определяется величина р – основание системы, а любое число х записывается в виде комбинации степеней веса р от 0-й до n-й степени следующим образом:

    (x)p = xnpn-1 + xn-1pn-2 + ... + x2p1 + x1p0.

    Пример 1.

    Для представления чисел используются позиционные и непозиционные системы счисления.

    Система счисления в которой вес цифры (или символа алфавита) зависит от ее места в записи числа или слова называется позиционной; в противном случае система называется непозиционной.

    Пример 2.

    Алгоритм перевода десятичных чисел в р-ную систему счисления:

    Пример 3. Число 2210 перевести в двоичную систему счисления.

    Решение. Делим число 2210 последовательно на 2 до тех пор, пока не получится в очередном частном число меньшее или равное 1

     

    Записываем остатки от деления в обратном порядке и получаем новое число: 101102.

    Пример 4. Число 57110 перевести в восьмеричную систему счисления.

    Решение. Делим число 57110 последовательно на 8 до тех пор, пока не получится в очередном частном число меньшее или равное 7

     

    Записываем остатки от деления в обратном порядке и получаем новое число: 10738.

    Для перевода двоичного числа в десятичное необходимо записать его в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 2, и вычислить по правилам десятичной арифметики:

    x2 =An2n-1 + An-12n-2 + ... + A221 + A120.

    Пример 5. Число 111010002 перевести в десятичную систему счисления.

    Решение.

    111010002 =1 * 27 + 1 * 26 + 1 * 25 + 0 * 24 + 1 * 23 + 0 * 22 + 0 * 21 + 0 * 20 = 23210.

    Для перевода восьмеричного числа в десятичное необходимо записать его в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 8, и вычислить по правилам десятичной арифметики:

    x8 =An8n-1 + An-18n-2 + ... + A281 + A180.

    Пример 6. Число 750138 перевести в десятичную систему счисления.

    Решение.

    750138 =7 * 84 + 5 * 83 + 0 * 82 + 1 * 81 + 3 * 80 = 3124310.

    Чтобы перевести число из двоичной системы в восьмеричную, его нужно разбить на триады (тройки цифр), начиная с младшего разряда, в случае необходимости дополнив старшую триаду нулями, каждую триаду заменить соответствующей восьмеричной цифрой.

    Пример 7. Число 10010112 перевести в восьмеричную систему счисления.

    Решение. 001 001 0112 = 1138.
     



    вверх